Problem-Based Learning: A Practical Approach for STEM Education

12th Annual Massachusetts Community College Conference on Teaching and Learning

April 17, 2009
Springfield Technical Community College
Springfield, MA

Nicholas Massa, PhD
Springfield Technical Community College

Fenna Hanes
New England Board of Higher Education

Michele Dischino, PhD
Central Connecticut State University

Judith Donnelly
Three Rivers Community College
What is Problem-Based Learning?

Used extensively in medical education since the early 1970’s, PBL teaches students the process of solving genuine real-world problems by:

– Collaboratively analyzing and framing a problem
– Engaging in self-directed learning
– Brainstorming possible solutions
– Testing hypotheses
– Converging on an optimal solution
Benefits of Problem-Based Learning:

- Improves students’ understanding and retention of knowledge
- Promotes a “deep approach” to learning
- Improves critical thinking and problem solving skills
- Improves motivation for learning
- Improves students’ ability to transfer skills and knowledge to new situations
Characteristics of Traditional PBL:

- Learning is student centered
- Learning occurs in small groups
- A *tutor* acts as facilitator
- Authentic problems are presented *before* any preparation or study has occurred
- The problem itself drives the learning
- New information is acquired via self-directed learning
Problem-Based Learning: A Practical Approach for STEM Education
The Photon PBL Project

PBL addresses Bransford’s *How People Learn* findings:

Based on over 30 years of research:

1. People come to learning experiences with preconceptions. Uncovering prior knowledge allows preconceptions to be examined and misconceptions recognized.
2. Learning concepts and skills within a meaningful context enables students to organize their learning in ways that facilitate retrieval and application.
3. Metacognition, or thinking about how one thinks, is essential for reflective practice to develop.
The many faces of PBL: What’s the difference?

Inquiry-Based Methods

- **Problem-based learning** – Students work *in teams* to solve authentic ill-structured problems *before* being formally introduced to concepts.

- **Project-based learning** – Students apply *previously* acquired knowledge to solve a specific problem.

- **Case-based learning** – Students study historical or hypothetical cases involving scenarios likely to be encountered in professional practice.

- **Discovery learning** – Students work independently on problem solutions with little or no instructor direction.

- **Guided discovery** – Similar to discovery learning but instructor provides some direction.

Characteristics of a good problem

A good PBL problem should...

- Be open-ended with more than one possible solution
- Be ill-structured, with insufficient information to facilitate inquiry
- Engage students' interest, and motivate them to probe for deeper understanding of the concepts being introduced
- Be based on real-world issues and situations
- Require cooperation and teamwork among team members
- Be linked to prior knowledge
The problem with PBL...

- Students are thrust into an uncertain, self-directed learning environment
- Responsibility for learning is placed on the student, often eliciting fear and anxiety
- Frustration and anxiety can lead to disengagement from the learning process among students
- Stressful for faculty trying to transition to PBL from more traditional instructional methods
Problem-Based Learning: A Practical Approach for STEM Education

The Photon PBL Project

Addressing the problem...

The Photon PBL Project

- Three year NSF ATE project ($750,000)

- Project Goals:
 - Create 8 multimedia PBL “Challenges” in Photonics Technology in collaboration with photonics industry and university partners
 - Recruit and train over 28 (now over 50) HS & college STEM educators to field test PBL Challenges in their classrooms
 - Create a comprehensive teacher's guide for implementing PBL Challenges in STEM classrooms
 - Conduct research on the efficacy of PBL in STEM education
Photon PBL Challenge Structure:

Three levels of difficulty (or autonomy) designed to scaffold the development of students’ problem solving skills.

- **Level 1 (Structured)** – Case Study
- **Level 2 (Guided)** – Guided Inquiry
- **Level 3 (Open-Ended)** – Traditional PBL

Instructor controls access to information through password protection
Problem-Based Learning: A Practical Approach for STEM Education

The Photon PBL Project

PBL Continuum

Level of Autonomy

High

Medium

Low

Challenge Level

Level 1

Level 2

Level 3

High Structure

Moderate Structure

Low Structure
Problem-Based Learning: A Practical Approach for STEM Education
The Photon PBL Project
Problem-Based Learning: A Practical Approach for STEM Education
The Photon PBL Project

Photon PBL “Challenges”

Stripping with light, fantastic! - Photomachining needs to develop a process for stripping the coating from 50 micron wire.

DNA Microarray Fabrication - Boston University graduate students need to determine the best starting exposure time for a DNA microarray fabri­cator.

High Power Laser Burn-In Test - IPG Photonics needs a way to run 100-hour unattended burn-in tests on a 2-kw laser.

Shining Light on Infant Jaundice - Partners Photodigm, Drexel and SMU ask, "Can technology provide a safe and effective portable home treatment for newborn jaundice?"

Watt's my light? - The package says a 26 watt fluorescent has the same light output as a 100 watt incandescent. Can Cal Poly Pomona students verify this statement?

Of mice and Penn - Can optics provide a non-contact measurement method as part of a UPenn McKay Orthopaedic Research Lab project to study the healing of tendons?

Hiking 911 - Two boys are lost in deep woods in rough terrain. Penn State Electro Optics Center (EOC) needs to recommend the best technology to locate them.
Problem-Based Learning: A Practical Approach for STEM Education
The Photon PBL Project

Photon PBL Challenge Website:
http://vilenski.org/pub
(Passwords located in Implementation Guide Appendix)

Photon PBL Conference Papers and Related Resources:
http://photonprojects.org
Description
In this PBL Challenge, you will be part of university student team tasked with measuring the output of light bulbs.

Photonics Principles Reinforced
- Spectral output of light sources
- Optical power measurements
- Radiometry and photometry

STEM Connections
Basic algebra and geometry, energy and power, scientific inquiry

Instructions
Click on "introduction" to view the Introduction to the Cal Poly Pomona Challenge.
Cal Poly Pomona

Introduction

Instructions
Click on video box to view the Challenge Introduction. Click on Additional Resources button for more information. When complete, click on Organization Overview.
Instructions
Click on video box to view the University Overview. Click on “Additional Resources” for more information on Cal Poly Pomona. When complete, click on the “Problem” button to begin the challenge.
Cal Poly Pomona
Problem Statement

Instructions
Click on video box to view Cal Poly Pomona problem statement. When complete, click on problem solving graphic in upper right-hand corner for problem solving toolbox or Additional Resources button for more information.
Instructions
Click on video box to view Cal Poly Pomona problem discussion. When complete, click on problem solving graphic in upper right-hand corner for problem solving toolbox or "Additional Resources" button for more information.
Cal Poly Pomona
Problem Solution

Instructions
Click on video box to view Cal Poly Pomona problem solution. When complete, click on problem solving graphic in upper right-hand corner for problem solving toolbox or Additional Resources for more information.
Cal Poly Pomona
Additional Resources for Solution

Additional Resources

- Script for the solution video
- Solution summary
- Student bulb data
- Results of tests on compact fluorescent bulbs from RPI Lighting Center
- Challenge Reflective Journal

Career & Technical Info

- SPIE: http://www.spie.org
- OSA: http://www.osa.org
- PHOTON2 Project: http://www.nebhe.org/content/view/49/83/
Problem Solving Toolbox
Click on the graphic to begin the problem solving process.

- Problem Analysis
- Solution Testing
- Brainstorming
- Self-Directed Learning
Problem Solving Toolbox

The White Board - Problem Analysis

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are we trying to accomplish?</td>
<td></td>
</tr>
<tr>
<td>What do we know about the problem?</td>
<td></td>
</tr>
<tr>
<td>What do I need to learn?</td>
<td></td>
</tr>
<tr>
<td>Are there any special conditions that apply?</td>
<td></td>
</tr>
<tr>
<td>Any preliminary solution ideas?</td>
<td></td>
</tr>
</tbody>
</table>
Problem Solving Toolbox
The White Board - Self Directed Learning

What are My Learning Goals?

Specifically, what do I need to learn?
What instructional resources will I use?
How will I budget my time?
How will I know when I've achieved my learning objectives?
Problem Solving Toolbox
The White Board - Brainstorming

<table>
<thead>
<tr>
<th>Ideas</th>
<th>Pros</th>
<th>Cons</th>
<th>Ranking</th>
<th>Next Steps</th>
</tr>
</thead>
</table>

Let's hear some ideas...
Problem Solving Toolbox

The White Board - Test Solutions

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What criteria will I use to determine if my solution is acceptable?</td>
<td></td>
</tr>
<tr>
<td>How will I test the solution?</td>
<td></td>
</tr>
<tr>
<td>What resources will I need to conduct the test?</td>
<td></td>
</tr>
<tr>
<td>What is my timeline for testing?</td>
<td></td>
</tr>
</tbody>
</table>
Cal Poly Pomona
Teacher Resources

Technical Background
Assessment Strategies
Case Studies
Standards Alignment
Assessing Student Performance in PBL

(Based on Adaptive Expertise Model

Three-Level Assessment Strategy
Total score is the weighted sum of Content Knowledge, Conceptual Knowledge, and Problem-Solving Ability.

Content Knowledge: Weighting Factor = 0.10

Conceptual Knowledge: Weighting Factor = 0.40

Problem-Solving Ability (Transfer): Weighting Factor = 0.50

Total Score

* Weighting Factor subject to instructor discretion

Assessing Content Knowledge in PBL

- End of Chapter Questions
- Level I & II Problems
- Laboratory Experiences

(Click here for question bank)

Based on

Assessed using

Exams
Quizzes
Homework

Photonics Content

\[d \cdot \sin \theta = m \lambda \]

\[E = h \nu \]

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]
Assessing Conceptual Knowledge in PBL

Main Concepts:
- A
- B
- C
- D
- E
- F
- G

Organized into a Concept Map

Concept Map for this Challenge
Click here

Concept Map Scoring Rubric
Click here
Assessing Problem-Solving Ability in PBL

- Solution Testing
- Brainstorming
- Self-Directed Learning

Problem Analysis

Whiteboards

Reflective Journal
Click here

Summarized in a

Used to assess

Problem-Solving Rubric
Click here
Problem-Based Learning: A Practical Approach for STEM Education
The Photon PBL Project

STCC Students Build Integrating Sphere

Boston public HS Students Build Integrating Sphere
Problem-Based Learning: A Practical Approach for STEM Education

The Photon PBL Project

Romanian HS Students using Photon PBL “Whiteboards”
Problem-Based Learning: A Practical Approach for STEM Education

The Photon PBL Project

STCC LEOT students using Photon PBL “Whiteboards”

STCC LEOT Students testing problem solution
Problem-Based Learning: A Practical Approach for STEM Education
The Photon PBL Project

STCC LEOT students building a prototype system for treating infant jaundice

Drexel University students work on a PBL Challenge.

"The Challenge opened my eyes to a whole new world... I wonder how much more I could have learned if this method had been an integral part of the core curriculum of STCC."

Porfirio Creque – LEOT Class of 2008
Providing students with an educational experience that most closely emulates the world in which they will apply their knowledge and skills will produce proficient individuals capable of adapting to the ever-changing workplace of the 21st century.